Exponential decay rate for a wave equation with Dirichlet boundary control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Decay for the Semilinear Wave Equation with Source Terms

In this paper, we prove that for a semilinear wave equation with source terms, the energy decays exponentially as time approaches infinity. For this end we use the the multiplier method.

متن کامل

Energy Decay Rate for the Kirchhoff Type Wave Equation with Acoustic Boundary

In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with acoustic boundary in a bounded domain in Rn. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

متن کامل

Rational energy decay rate for a wave equation with dynamical control

1. I N T R O D U C T I O N A N D M A I N R E S U L T In this work, we s tudy the stabilization of one-dimensional wave equations with a dynamical control Ytt -Yxz ---O, 0 ~ X ~ 1, y(0, t) = 0, yx(1, t ) + ~(t) = 0, (1.1) ~t(t) : yt(1, t) + ~?(t) = O, where ~ denotes the dynamical control and ~ is a positive constant. The dynamical control has been introduced in the finite-dimensional case (ordi...

متن کامل

Exponential decay of solutions of a nonlinearly damped wave equation

The issue of stablity of solutions to nonlinear wave equations has been addressed by many authors. So many results concerning energy decay have been established. Here in this paper we consider the following nonlinearly damped wave equation utt −∆u+ a(1 + |ut|)ut = bu|u|p−2, a, b > 0, in a bounded domain and show that, for suitably chosen initial data, the energy of the solution decays exponenti...

متن کامل

Nearly a polynomial decay rate for the dissipative wave equation

The study of stabilization of the linear dissipative wave equation in a bounded domain with Dirichlet boundary condition is now an old problem. The exponential decay rate of the energy was established by Bardos, Lebeau and Rauch [ BLR] under a geometrical hypothesis linked with the geodesics. Furthermore such condition called geometric control condition is almost necessary to get a uniform expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2007

ISSN: 0893-9659

DOI: 10.1016/j.aml.2006.06.020